Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1994 Printed in Austria

Kristallstruktur von Na₃(NH₄)₁₂[Mo₅₇Fe₆(NO)₆O₁₇₄(OH)₃(H₂O)₂₄] \cdot 76H₂O, einer Verbindung mit einem ungewöhnlichen Clusteranion

A. Müller*, W. Plass, E. Krickemeyer, S. Dillinger, H. Bögge, A. Armatage, C. Beugholt und U. Bergmann

Fakultät für Chemie der Universität, Lehrstuhl für Anorganische Chemie I, D-33501 Bielefeld, Bundesrepublik Deutschland

Crystal structure of $Na_3(NH_4)_{12}[Mo_{57}Fe_6(NO)_6O_{174}(OH)_3(H_2O)_{24}]$ ·76H₂O, a compound with an unique cluster anion

Summary. The X-ray crystal structure of the compound $Na_3(NH_4)_{12}[Mo_{57}Fe_6(NO)_6O_{174}(OH)_3-(H_2O)_{24}]$ ·76H₂O (3) [P6₃/mmc; a = 2380.6(5), c = 2763.4(7), Z = 2], the giant cluster anion of which has the shape of a doughnut, shows remarkable details: The cluster [{Fe(H_2O)_2}_6{Mo(\mu-H_2O)_2(\mu-OH)Mo}_3{Mo_{15}(MoNO)_2^{3+}O_{58}(H_2O)_2}_3]^{15-} can be described as being composed of three transferable {Mo₁₇} ligands bridged by cationic centers and contains a novel nanodimensional central cavity.

Keywords. Cluster; Crystal structure; Polyoxometalate.

Einleitung

Die Synthese von extrem großen molekularen Gebilden mit Nanodimensionen ist eine große Herausforderung für den Chemiker; dies ist vor allem vor dem Hintergrund der Problematik templatgesteuerter Reaktionsabläufe zu verstehen. Nicht unerwähnt bleiben sollte hierbei auch die materialwissenschaftliche Relevanz. Im Bereich der Chemie der Polyoxometallate in diesem Zusammenhang in jüngster Zeit erhebliche Fortschritte erkennbar [1]. Grundsätzliche Schwierigkeiten ergeben sich aber häufig bei der Kristallstrukturanalyse von Verbindungen mit extrem großen molekularen Gebilden. So mußten z. B. die früher publizierten Strukturen [2] der großen Polyoxomolybdate $(NH_4)_{12}[Mo_{36}(NO)_4O_{108}(H_2O)_{16}]\cdot 33H_2O$ (1) und $(NH_4)_{21}[Mo_{57}V_6(NO)_6O_{180}(OH)_3(H_2O)_{18}]\cdot 65H_2O$ (2) von uns ganz erheblich korrigiert werden [3]. 1 wurde früher als Neutralverbindung d. h. ohne NH_4^+ -Ionen formuliert; von gravierender Bedeutung ist auch die für 2 angegebene falsche Zusammensetzung, was z. B. dazu geführt hat, daß dem nicht protonierten reinen Clusteranion die Formel $[Mo_{57}V_6(NO)_6O_{183}(H_2O)_{18}]^{6-}$ statt $[Mo_{57}V_6-(NO)_6O_{183}(H_2O)_{18}]^{6-}$ u.a. hinsichtlich verschiedener Strukturdetails und der Oxidationsstufen der Metallatome gemacht.) Hier wird über die Kristallstruktur der ungewöhnlichen Verbindung Na₃(NH₄)₁₂ [Mo₅₇Fe₆(NO)₆O₁₇₄(OH)₃(H₂O)₂₄]·76H₂O (3) berichtet, die ein von uns isoliertes [4] und in mehrfacher Hinsicht besonders interessantes Clusteranion [{Fe(H₂O)₂}₆ {Mo(μ -H₂O)₂(μ -OH)Mo}₃ {Mo₁₅(MoNO)₂³⁺O₅₈-(H₂O)₂}₃]¹⁵⁻ aufweist.

Experimenteller Teil

 $Na_{3}(NH_{4})_{12}[Mo_{57}Fe_{6}(NO)_{6}O_{174}(OH)_{3}(H_{2}O)_{24}] \cdot 76H_{2}O$

Eine Mischung aus 12.00 g (49.6 mmol) Na₂MoO₄·2H₂O, 9.50 g (23.5 mmol) Fe(NO₃)₃·9H₂O, 16.00 g (230.2 mmol) NH₂OH·HCl, 250 ml Wasser und 12.5 ml 3.5% iger Salzsäure wird unter schnellem Rühren zum Rückfluß erhitzt (der zunächst ausgefallene Niederschlag löst sich wieder auf: Farbwechsel der Lösung von braun über dunkelgrün, braun nach grünlichbraun; zeitweise starkes Schäumen) bis am oberen Rückflußkühlerausgang braune Dämpfe (nitroser Gase) auftreten (Dauer: ca. 20 min). Der ausgefallene beigebraune Niederschlag wird von der heißen Reaktionslösung abfiltriert und das Filtrat nach Abkühlung auf 20 °C zunächst 2 d im offenen 400 ml Becherglas stehengelassen und erneut filtiert. Aus der Lösung, die im geschlossenen Gefäß bei ca. 5 °C aufbewahrt wird, fallen

Kristallfarbe -form	braun Prismen		
Kristallgröße	$0.45 \times 0.25 \times 0.15 \text{ mm}$		
Meßtemperatur	193(2) K		
Raumgruppe	P6 ₁ /mmc		
Zelldimensionen	a = 2380.6(5) pm		
	c = 2763.4(7) pm		
Zellvolumen	13.563(5) nm ³		
Ζ	2		
Berechnete Dichte	$2.67 Mg/m^3$		
Absorptionskoeffizient	$2.92 \mathrm{mm^{-1}}$		
Wellenlänge	71.073 pm (Graphitmonochromator)		
Art der Messung	ω-san		
Anzahl der gemessenen Reflexe	8942		
Strukturverfeinerung	Full-Matrix Least-Squares über F ²		
Goodness-of-Fit für F ²	1.110		
	R1 = 0.0629 für 3377 Reflexe [F > $4\sigma(F)$]		
	$wR2 = 0.1557$ für 4425 Reflexe $[I > -3\sigma(I)]$		
Definition der R-Werte	$\mathbf{R}1 = \frac{\sum \ \mathbf{F}_0\ - \ \mathbf{F}_c\ }{\ \mathbf{F}_0\ }$		
Deminion der Rewerte.	$\Sigma F_0 $		
	$wR2 = \sqrt[2]{\frac{\Sigma\omega(F_0^2 - \overline{F_c^2})^2}{\Sigma\omega F_0^2}}$		
mit:	$w^{-1} = \sigma^2 (F_0^2) + (0.0854 P)^2$		
und	$P = \frac{1}{3}(F_0^2 + 2F_c^2)$		

Tabelle 1. Kristalldaten und Stukturverfeinerung von 3

innerhalb von 3-4 d braune hexagonale Kristalle (Strichfarbe: grünlichbraun) von 3 aus. Ausbeute: 0.6 g (ca. 6% bezogen auf Mo).

Analyse für $H_{251}N_{18}Fe_6Mo_{57}Na_3O_{283}$ (10905.6): H gef. 2.10 (ber. 2.32), N 2.45 (2.31), Fe 3.1 (3.07), Na $\approx 0.8 (0.63)\%$.

Kristallstrukturanalyse

Die Struktur wurde durch eine Einkristallröntgenstrukturanalyse ermittelt (Siemens R3m/V Vierkreisdiffraktometer). Die mit 2 θ -Werten von 22 Reflexen im Bereich von 20° < 2θ < 30° ermittelten Zelldimensionen sind zusammen mit den Kristalldaten und Details zur Art der Datensammlung bzw. der Strukturverfeinerung in Tabelle 1 zusammengestellt. Nach einer empirischen Absorptionskorrektur konnte die Struktur durch die Anwendung direkter Methoden gelöst werden (SHELXS-86) [5]. Die bei der anschließenden Verfeinerung (SHELXL-93) [5] erhaltenen Atomkoordinaten und Auslenkungsparameter sowie ausgewählte Bindungslängen und -winkel sind in den Tabellen 2–4 wiedergegeben.

Ergebnisse

Die Verbindung 3 kristallisiert in der Raumgruppe P6₃/mmc. Erwartungsgemäß wird die Packung im Kristallgitter durch die sehr großen Clusteranionen bestimmt (Lage des Zentrums auf (1/3, 1/3, 3/4) mit der kristallographischen Symmetrie $\overline{6}m2$). Die Natriumkationen in 3 besetzen eine durch vier Kristallwassermoleküle und je ein Sauerstoffatom zweier benachbarter Clusteranionen gebildete Oktaederlücke, wobei die durch die in der Röntgenstrukturanalyse gefundene Halbbesetzung dieser kristallographisch zwölfzähligen Lage durch die Elementaranalyse bestätigt wird. Da durch die Röntgenstrukturanalyse aufgrund der H₂O/NH₄⁺-Fehlordnung lediglich die maximale Anzahl von NH₄⁺-Kationen ermittelt werden kann, wurden die relevanten analytischen Daten für die endgültige Formel von 3 zugrunde gelegt. Mit Hilfe der Einkristallröntgenstrukturanalyse, Bindungsvalenzsummenberechnung [6], Redoxtitration mit Permanganat und Identifikation der (MoNO)³⁺-Einheit anhand der Lage der v(NO)-Streckschwingung im IR-Spektrum (1600 cm⁻¹) [7] ergibt sich die folgende Formel für das Clusteranion von 3:

$$[\{Fe(H_2O)_2\}_6\{Mo(\mu-H_2O)_2(\mu-OH)Mo\}_3 \\ \{Mo_{15}(MoNO)_3^{3+}O_{58}(H_2O)_2\}_3]^{15-}.$$

Alle beobachteten Bindungslängen entsprechen den damit verbundenen Erwartungswerten (vgl. Tabelle 4).

Das in **3** vorliegende hochsymmetrische ($\bar{6}m2$, D_{3h}) Riesenclusteranion hat die Form eines "doughnut" und besteht aus 276 Atomen (ohne H; Molekulargewicht 9250.9 Dalton). Es weist darüberhinaus eine enorme Vielfalt verschiedenster Koordinationspolyeder auf (vgl. Abb. 1 und 2; symmetrieerzeugte Positionen werden nicht explizit aufgeführt): $3Mo^{VI}O_6$ (Mo3), $6(O=)Mo^{VI}O_4(H_2O)$ (Mo7), $24(O=)Mo^{VI}O_5$ (Mo2, Mo5), $12(O=)_2Mo^{VI}O_4$ (Mo1) und $6Fe^{III}O_4(H_2O)_2$ Oktaeder (Fe) sowie 6 pentagonale Bipyramiden vom Typ Mo(NO)O₆ (Mo4) und $3O_3\{Mo^V(\mu-H_2O)_2(\mu-OH)Mo^V\}O_3$ -Einheiten* (Mo6), die aus zwei flächenverknüpften Oktaedern bestehen.

^{*} Die Angabe Mo^V bedeutet, daß die Elektronendichte der relevanten sechs 4d-Elektronen bevorzugt hier lokalisiert ist. Daraus resultiert dann eine approximative Ladung der Einheit

Atomxyz $U(eq)$ Mo(1)-800(1)3274(1)6907(1)26(1)Mo(2)429(1)2599(1)6918(1)23(1)Mo(3)1829(1)3657(1)750020(11)Mo(4)1794(1)3588(1)6338(1)21(1)Mo(5)726(1)4067(1)6171(1)23(1)Mo(7)2486(1)4972(1)5740(1)21(1)Fe4230(1)5770(1)5876(1)22(1)Mo(7)2486(1)4972(1)5740(1)21(1)Fe4230(1)5770(1)5876(1)22(1)0(1)-1086(4)380(3(4)6876(3)34(2)0(2)-1171(5)2817(5)750033(2)0(3)-1298(4)2660(4)6520(3)37(2)0(4)-243(3)2696(3)6973(2)26(1)0(5)-50(3)3751(3)6494(2)25(2)0(6)-112(4)3880(4)750027(2)0(8)220(4)1994(4)6512(3)32(2)0(10)851(3)3377(3)6501(2)25(1)0(11)941(4)3328(4)750021(2)N1570(3)3140(5)5816(4)28(3)01404(4)2808(8)5432(4)71(5)0(12)166(4)4330(3)6098(2)22(1)0(13)2087(2)4174(4)7002(3)25(2)0(14)469(3)3700(3)5629(2)28(2)0(15)914(3)4574(3)<					
	Atom	x	у	z	U(eq)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mo(l)	-800(1)	3274(1)	6907(1)	26(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mo(2)	429(1)	2599(1)	6918(1)	23(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mo(3)	1829(1)	3657(1)	7500	20(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo(4)	1794(1)	3588(1)	6338(1)	21(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo(5)	726(1)	4067(1)	6171(1)	23(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo(6)	692(1)	4652(1)	7500	22(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo(7)	2486(1)	4972(1)	5740(1)	21(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe	4230(1)	5770(1)	5876(1)	22(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(1)	-1086(4)	3803(4)	6876(3)	34(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(2)	-1171(5)	2817(5)	7500	33(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(3)	-1298(4)	2660(4)	6520(3)	37(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(3) 0(4)	-243(3)	2696(3)	6973(2)	26(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(5)	-50(3)	3751(3)	6494(2)	25(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(6)	-112(4)	3880(4)	7500	23(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(7)	344(4)	2116(4)	7500	27(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(8)	220(4)	1994(4)	6512(3)	36(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(9)	1644(2)	2888(5)	6880(3)	23(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(10)	851(3)	3377(3)	6501(2)	25(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(11)	941(4)	3328(4)	7500	21(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N N	1570(3)	3140(5)	5816(4)	28(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1404(4)	2808(8)	5432(4)	71(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(12)	1464(3)	4330(3)	6098(2)	22(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(12)	2087(2)	4174(4)	7002(3)	25(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(14)	469(3)	3700(3)	5629(2)	28(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(15)	914(3)	4877(3)	6049(2)	26(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(15)	1047(3)	4534(3)	6995(2)	25(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(10)	1047(3)	5618(4)	7500	33(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(18)	186(6)	5093(3)	7025(8)	92(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(10)	2690(2)	5380(5)	6607(3)	28(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(20)	2302(2)	4604(5)	5190(3)	31(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(20)	3341(3)	5513(3)	5713(2)	27(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(21)	6060(2)	5960(2)	6611(3)	24(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(22)	4385(2)	5615(2)	5175(3)	32(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N_{2}(1)$	-1895(6)	1895(6)	5969(8)	100(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)	-2090(12)	3955(6)	7500	59(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2)	-1677(9)	1477(9)	7500	102(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(3)	661(11)	1323(22)	5747(15)	192(16)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(4)	4750(4)	5250(4)	3971(5)	43(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(24)	4/50(4)	0	7010(17)	58(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(24)	-1339(5)	1339(5)	6386(8)	106(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(25)	~1339(J) //01(0)	983(19)	7500	162(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(23)	-2414(9)	2616(9)	5903(11)	75(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(28)	3333	6667	5004(26)	97(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(20)	-3616(28)	2099(30)	6248(20)	99(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(29')	-3568(17)	2225(19)	5475(13)	50(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(20)	-2604(15)	2604(15)	7500	234(25)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(31)	6202(8)	7379(8)	4604(5)	116(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(32)	-873(10)	873(10)	7271(13)	108(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(33)	-564(15)	564(15)	6473(22)	172(24)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(34)	7523(12)	7812(12)	4520(8)	188(9)
0(36) 5488(6) 6045(6) 4732(4) 84(3) 0(37) 864(17) 1727(34) 4560(25) 203(30)	0(35)	-3333	3333	6747(24)	205(26)
0(37) 864(17) 1727(34) 4560(25) 203(30)	0(36)	5488(6)	6045(6)	4732(4)	84(3)
	0(37)	864(17)	1727(34)	4560(25)	203(30)

Tabelle 2. Atomkoordinaten (\times 10^4) und isotrope Auslenkungsparameter $U_{eq}^{\ a}\,(pm^2\times 10^{-1})$ von 3

^a U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij}-Tensors. Folgende Positionen im Gitter wurden aufgrund von Fehlordnung mit einem von der Normalbesetzung abweichenden Besetzungsfaktor verfeinert: Na(1) 0.25, O(24) 0.0833, O(27) 0.25, O(28) 0.0833, O(29) 0.25, O(29') 0.25, O(32) 0.25, O(33) 0.25 und O(37) 0.25. Es wurden entsprechend der U_{eq}-Werte 18 der aufgrund ihrer N–N-Abstände möglichen 24 Positionen pro Anion im Gitter als N(NH₄⁺) verfeinert

		and the second se				
Atom	U11	U22	U33	U23	U13	U12
Mo(1)	22(1)	30(1)	23(1)	0(1)	-1(1)	10(1)
Mo(2)	23(1)	21(1)	21(1)	-1(1)	-1(1)	9(1)
Mo(3)	22(1)	20(1)	18(1)	0	0	10(1)
Mo(4)	23(1)	21(1)	18(1)	-1(1)	0(1)	11(1)
Mo(5)	22(1)	23(1)	23(1)	2(1)	0(1)	11(1)
Mo(6)	22(1)	22(1)	21(1)	0	0	9(1)
Mo(7)	23(1)	23(1)	17(1)	0(1)	0(1)	12(1)
Fe	23(1)	23(1)	18(1)	0(1)	0(1)	11(1)
0(1)	28(4)	42(5)	35(4)	4(3)	0(3)	19(4)
0(2)	28(6)	36(6)	37(6)	0	0	17(5)
0(3)	32(4)	43(5)	29(4)	-7(3)	-6(3)	13(4)
0(4)	21(3)	24(3)	26(3)	-3(3)	2(3)	7(3)
0(5)	14(3)	38(4)	18(3)	2(3)	-5(3)	8(3)
0(6)	13(5)	21(5)	26(5)	0	0	2(4)
0(7)	24(5)	12(4)	36(5)	0	0	2(4)
0(8)	41(4)	25(4)	30(4)	-1(3)	-5(3)	8(3)
0(9)	26(4)	33(5)	11(4)	0(4)	0(2)	17(3)
0(10)	25(4)	23(3)	24(3)	1(3)	0(3)	11(3)
0(11)	22(5)	20(5)	22(4)	0	0	11(4)
N	43(6)	17(6)	16(5)	0(4)	0(2)	8(3)
0	102(10)	73(10)	30(7)	-21(7)	-10(3)	36(5)
0(12)	18(3)	24(3)	22(3)	0(3)	2(3)	9(3)
0(13)	27(4)	20(5)	24(5)	0(4)	0(2)	10(2)
0(14)	32(4)	27(4)	24(3)	-3(3)	-2(3)	15(3)
0(15)	19(3)	36(4)	25(3)	4(3)	4(3)	14(3)
0(16)	33(4)	21(3)	22(3)	0(3)	1(3)	14(3)
0(17)	31(8)	28(6)	41(8)	0	0	15(4)
0(18)	34(8)	32(5)	210(21)	5(5)	10(10)	17(4)
0(19)	35(4)	33(6)	17(4)	2(4)	1(2)	16(3)
0(20)	46(5)	25(5)	14(4)	-8(4)	-4(2)	13(3)
0(21)	28(4)	24(4)	26(3)	3(3)	0(3)	11(3)
0(22)	26(3)	26(3)	14(4)	2(2)	-2(2)	8(4)
0(23)	44(5)	44(5)	18(5)	2(2)	-2(2)	30(5)
				• •		· ·

Tabelle 3. Anisotrope Auslenkungsparameter U_{ii} (pm² × 10⁻¹) von **3**

Der anisotrope Auslenkungsfaktor- Exponent hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + \ldots + 2hka^*b^* U_{12}$]

Trotz dieser Vielfalt an Koordinationspolyedern läßt sich das Clusteranion von 3 in wenige für die relevante Chemie charakteristische Fragmente aufteilen: Von grundlegender Bedeutung sind die $\{Mo_{15}(MoNO)_2^{3+}O_{58}(H_2O)_2\}^{20-}$ -Einheiten $(\{Mo_{17}\})$, die formal als Liganden durch die Koordination zu den kationischen Zentren $\{Fe(H_2O)_2\}^{3+}$ und $\{Mo(\mu-H_2O)_2(\mu-OH)Mo\}^{9+}$ offensichtlich stabilisiert werden. Wichtig ist, daß sich die Mo_{17} -Einheiten auch durch andere Zentren, wie z. B. $\{(H_2O)VO\}^{2+}$ und $\{Mo^V(\mu-H_2O)_2(\mu-OH)Mo^V\}^{9+}$ in 2 oder $\{MoO_2\}^{2+}$ sowie Protonierung in 1, stabilisieren lassen. Die koordinationschemische Analogie von VO^{2+} und Fe^{3+} , die sich auch in der Geochemie der beiden Metalle wiederfindet, erklärt den Bezug zwischen 2 und 3 [8].

Die im Clusteranion von 3 – wie auch in denen von 1 und 2 – auftretende $\{Mo_{17}\}$ -Einheit läßt sich formal von einem heptamolybdatähnlichen $\{Mo_7\}$ -Fragment ableiten, das zwei $(MoNO)^{3+}$ -Gruppen in Form von pentagonalen Bipyramiden enthält.

Neben seiner Größe und seines Aufbauprinzips weist das Riesenanion von 3 eine weitere interessante Eigenschaft auf, nämlich einen entlang der $\overline{6}$ -(S₃)-Achse durch

Abb. 1. Kugelstabmodell des Clusteranions von 3 entlang der $\overline{6}\text{-}(S_3)\text{-}Achse$

Abb. 2. Kugelstabmodell des Clusteranions von 3 entlang einer der 2- (C_2) -Achsen

$\begin{split} & \text{Mo}(1) - 0(1) \\ & \text{Mo}(1) - 0(2) \\ & \text{Mo}(1) - 0(6) \\ & \text{Mo}(2) - 0(8) \\ & \text{Mo}(2) - 0(7) \\ & \text{Mo}(2) - 0(9) \\ & \text{Mo}(2) - \text{Mo}(2) \# 1 \\ & \text{Mo}(3) - 0(11) \\ & \text{Mo}(3) - 0(11) \\ & \text{Mo}(3) - Mo(4) \\ & \text{Mo}(3) - Mo(4) \\ & \text{Mo}(3) - 0(12) \\ & \text{Mo}(4) - 0(12) \\ & \text{Mo}(4) - 0(12) \\ & \text{Mo}(4) - 0(12) \\ & \text{Mo}(5) - 0(10) \\ & \text{Mo}(6) - 0(16) \\ & \text{Mo}(6) - 0(17) \\ & \text{Mo}(6) - 0(17) \\ & \text{Mo}(6) - 0(17) \\ & \text{Mo}(6) - 0(10) \\ & \text{Mo}(6) - 0(10) \\ & \text{Mo}(6) - 0(10) \\ & \text{Mo}(5) - 0(10) \\ & $	170.8(8) 192.1(6) 225.4(6) 169.3(7) 192.8(5) 215.8(3) 321.8(2) 185.1(9) 321.31(14) 204.9(7) 208.9(7) 168.8(7) 183.8(6) 202.8(7) 172.6(6) 199.8(9) 253.7(8) 178.4(7) 194.0(7) 204.1(9) 126(2) 215(4) 234(2) 257(3) 152(7)	$\begin{split} & \text{Mo}(1) - 0(3) \\ & \text{Mo}(1) - 0(5) \\ & \text{Mo}(1) - 0(4) \\ & \text{Mo}(2) - 0(10) \\ & \text{Mo}(2) - 0(11) \\ & \text{Mo}(3) - 0(13) \\ & \text{Mo}(3) - 0(9) \\ & \text{Mo}(4) - N \\ & \text{Mo}(4) - 0(9) \\ & \text{Mo}(4) - 0(9) \\ & \text{Mo}(4) - 0(13) \\ & \text{Mo}(5) - 0(15) \\ & \text{Mo}(5) - 0(15) \\ & \text{Mo}(5) - 0(16) \\ & \text{Mo}(6) - 0(6) \\ & \text{Mo}(6) - 0(6) \\ & \text{Mo}(6) - 0(18) \\ & \text{Mo}(7) - 0(20) \\ & \text{Mo}(7) - 0(20) \\ & \text{Mo}(7) - 0(20) \\ & \text{Mo}(7) - 0(12) \\ & \text{Fe} - 0(15) \# 2 \\ & \text{Fe} - 0(22) \\ & \text{O}(3) - \text{Na}(1) \\ & \text{Na}(1) - 0(3) \# 3 \\ & \text{Na}(1) - 0(31) \# 5 \\ & \text{O}(29) - 0(22) \# 1 \end{split}$	171.9(7) 193.7(6) 234.6(7) 173.5(7) 197.5(6) 223.0(6) 174.1(9) 233.5(9) 171.4(11) 207.9(9) 219.6(9) 178.1(7) 200.6(6) 248.1(6) 187.8(9) 235.3(14) 169.9(9) 203.8(6) 195.0(7) 217.7(9) 225(2) 225(2) 234(2) 160(11) 126(7)
O(1) - Mo(1) - O(3) O(3) - Mo(1) - O(2) O(3) - Mo(1) - O(2) O(1) - Mo(1) - O(5) O(1) - Mo(1) - O(6) O(2) - Mo(1) - O(4) O(2) - Mo(1) - O(4) O(2) - Mo(1) - O(4) O(3) - Mo(2) - O(10) O(4) - Mo(2) - O(10) O(4) - Mo(2) - O(10) O(10) - Mo(2) - O(11) O(10) - Mo(2) - O(11) O(10) - Mo(2) - O(11) O(13) #1 - Mo(3) - O(13) O(13) #1 - Mo(3) - O(13) O(13) - Mo(3) - O(9) O(9) - Mo(3) - O(9) O(12) #2 - Mo(4) - O(10) O(12) #2 - Mo(4) - O(10) O(9) - Mo(4) - O(13) O(14) - Mo(5) - O(12) O(14) - Mo(5) - O(12) O(15) - Mo(5) - O(12) O(15) - Mo(5) - O(12) O(15) - Mo(5) - O(12) O(15) - Mo(5) - O(10) O(12) - Mo(5) - O(10) O(12) - Mo(5) - O(10) O(12) - Mo(5) - O(10) O(15) - Mo(5) - O(10) O(15) - Mo(5) - O(16) O(16) #1 - Mo(6) - O(18) O(16) - Mo(6) - O(18) O(12) - Mo(7) - O(21) #2 O(12) - Mo(7) - O(21) #2	103.6(4) $97.0(4)$ $100.0(3)$ $89.7(4)$ $73.9(3)$ $170.8(3)$ $80.6(3)$ $82.9(3)$ $98.5(3)$ $102.0(3)$ $153.8(3)$ $157.2(3)$ $73.1(3)$ $90.8(3)$ $82.3(3)$ $104.5(6)$ $94.4(5)$ $94.4(5)$ $137.0(6)$ $80.5(4)$ $94.4(5)$ $71.1(3)$ $138.7(2)$ $141.3(3)$ $72.6(2)$ $179.2(5)$ $77.3(3)$ $149.9(4)$ $100.9(3)$ $97.5(3)$ $155.5(3)$ $154.7(3)$ $72.9(3)$ $80.4(3)$ $84.7(2)$ $107.9(4)$ $95.6(3)$ $157.7(5)$ $86.5(4)$ $91.02.4(5)$ $152.0(3)$ $2.71.6(4)$	O(1) - Mo(1) - O(2) O(1) - Mo(1) - O(5) O(2) - Mo(1) - O(5) O(3) - Mo(1) - O(6) O(3) - Mo(1) - O(6) O(3) - Mo(1) - O(4) O(5) - Mo(1) - O(4) O(4) - Mo(2) - O(4) O(4) - Mo(2) - O(1) O(4) - Mo(2) - O(1) O(4) - Mo(2) - O(1) O(7) - Mo(2) - O(1) O(13) - Mo(3) - O(1) O(13) - Mo(3) - O(1) O(13) - Mo(3) - O(9) N - Mo(4) - O(12) N - Mo(4) - O(10) O(12) - Mo(4) - O(10) O(12) - Mo(4) - O(10) O(12) - Mo(4) - O(10) O(12) - Mo(4) - O(13) O(10) - Mo(4) - O(13) O(14) - Mo(5) - O(15) O(15) - Mo(5) - O(16) O(15) - Mo(5) - O(16) O(16) - Mo(6) - O(18) O(12) - Mo(7) - O(12) O(21) #2 - Mo(7) - O(12) O(21) #2 - Mo(7) - O(12) O(21) #7 - Fe - O(21)	102.7(4) 97.5(3) 149.7(3) 165.4(4) 83.8(2) 84.4(3) 76.3(3) 105.9(4) 100.2(4) 89.8(3) 92.6(4) 89.9(4) 162.7(4) 73.5(3) 72.4(3) 103.0(2) 175.0(4) 75.6(2) 97.4(3) 103.4(4) 94.0(2) 70.8(2) 2.145.1(4) 81.9(3) 86.2(2) 102.9(3) 101.1(3) 90.4(3) 98.2(3) 88.5(3) 176.0(3) 76.1(3) 79.2(2) 100.5(3) 152.3(5) 91.3(5) 70.7(4) 104.0(3) 98.2(3) 88.4(3) 89.4(4) (fortgesetzt)

Tabelle 4.Ausgewählte Bindungslängen [pm] und -winkel [°] von 3

Tabelle 4. (Fortsetzung)

0(01)//7 E- 0(15)//0	170 1(2)		
U(21) # / - Fe - U(15) # 2	1/9.1(3)	0(21)-Fe-0(15)#2	90.3(3)
U(21)-Fe-U(15)#8	179.1(3)	O(15)#2-Fe-O(15)#8	90.1(4)
0(21)-Fe-0(23)	89.4(3)	O(15)#2-Fe-O(23)	91.5(3)
0(21)-Fe-0(22)	88.6(3)	O(15)#2-Fe-O(22)	90.6(3)
0(23)-Fe-0(22)	177.1(4)	Mo(1)#1-O(2)-Mo(1)	117.1(6)
Mo(1)-O(3)-Na(1)	175.6(6)	Mo(2)-O(4)-Mo(1)	154.3(4)
Mo(5)-O(5)-Mo(1)	165.6(4)	Mo(6)-O(6)-Mo(1)	133.2(2)
Mo(1)#1-O(6)-Mo(1)	93.3(3)	Mo(2)-O(7)-Mo(2)#1	113.1(5)
Mo(4)-O(9)-Mo(2)	103.1(2)	Mo(2)#2-O(9)-Mo(2)	147.4(5)
Mo(4)-O(9)-Mo(3)	93.3(4)	Mo(2) - O(9) - Mo(3)	98.7(2)
Mo(2)-O(10)-Mo(5)	144.1(4)	Mo(2)-O(10)-Mo(4)	109.4(3)
Mo(5)-O(10)-Mo(4)	106.5(3)	Mo(3) - O(11) - Mo(2)	113.1(3)
Mo(3)-O(11)-Mo(2)#1	113.1(3)	Mo(2)-O(11)-Mo(2)#1	92.4(3)
0-N-Mo(4)	179.8(12)	Mo(5)-O(12)-Mo(7)	141.6(3)
Mo(5)-O(12)-Mo(4)	108.9(3)	Mo(7) - O(12) - Mo(4)	107.6(3)
Mo(3)-O(13)-Mo(4)	108.9(4)	Mo(5)-O(15)-Fe#9	150.2(4)
Mo(6)-O(16)-Mo(5)	138.5(4)	Mo(6)#10-0(17)-Mo(6)	111.5(7)
Mo(6)#10-0(18)-Mo(6)	89.1(7)	Mo(7)-O(21)-Fe	152.6(4)
0(27)-Na(1)-O(3)	84.5(10)	O(3) - Na(1) - O(3) #3	92.1(9)
0(27)-Na(1)-0(31)#4	86.3(10)	O(3) - Na(1) - O(31) #4	170.7(13)
0(3)#3-Na(1)-0(31)#4	85.8(5)	0(31)#4-Na(1)-0(31)#5	94.8(11)
0(27)-Na(1)-0(25)	158(2)	0(3)-Na(1)-0(25)	80.4(8)
O(31)#4-Na(1)-O(25)	108.1(9)		(0)

Symmetrietransformationen für die äquivalenten Atome: #1 x,y,-z+3/2 #2 -x+y,y,z #3 -y,-x,z #4 y-1,-x+y,-z+1 #5 x-y,-y+1,-z+1 #6 -x+y-1,y,z #7 -y+1,-x+1,z #8 -y+1,x-y+1,z #9 -x+y,-x+1,z #10 x,x-y+1,z

zwei Öffnungen in der Clusterschale zugängigen Hohlraum. Dieser Hohlraum mit ungewöhnlich großen Dimensionen (Durchmesser senkrecht zur $\overline{6}$ -(S₃)-Achse ca. 0.9 und parallel ca. 0.5 nm ohne Berücksichtigung der H-Atome) im Inneren des Clusteranions wird durch einen O₃₃-Polyeder aufgespannt (*12 O-Atome* (O19, O22) von terminalen H₂O-Liganden der Eisen(III)- (Fe) bzw. Molybdän(VI)-Zentren (Mo7), *3 O-Atome* (O17) der μ -OH-Gruppen in den drei {Mo(μ -H₂O)₂(μ -OH)Mo}-Einheiten, *12* an Mo5 gebundene μ_2 -O-Atome (O16) und 6 an Mo4 gebundene μ_2 -O-Atome (O13); hierbei wurden symmetrieerzeugte Positionen nicht explizit aufgeführt). Die beiden angesprochenen Öffnungen in der Clusterschale werden bemerkenswerterweise durch zwei nahezu ebene alternierende Mo-O-Fe-O-12er-Ringe begrenzt.

Die hier mitgeteilten Strukturdetails (Bedeutung des $\{Mo_{17}\}$ -Liganden) sind für die weitere Syntheseplanung bzw. die Polyoxometallatchemie von entscheidender Bedeutung.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der chemischen Industrie für die finanzielle Unterstützung der Arbeit.

Literatur

 Khan M. I., Zubieta J. (1992) J. Am. Chem. Soc. 114: 10058; Pope M. T., Müller A. (1991) Angew. Chem. 103: 56; Int. Ed. Engl. 30: 34; Müller A., Rohlfing R., Döring J., Penk M. (1991) Angew. Chem. 103: 575; Int. Ed. Engl. 30: 588; Müller A., Rohlfing R., Krickemeyer E., Bögge H. (1993) Angew. Chem. 105: 916; Int. Ed. Engl. 32: 909; Müller A. (1991) Nature 352: 115

[2] Zhang S., Huang G., Shao M., Tang Y. (1993) Chem. Commun.: 37; (1986) Chem. Commun.: 835

- [3] Müller A., Krickemeyer E., Dillinger S., Bögge H., Proust A., Plass W., Rohlfing R. (1993) Naturwissenschaften 80: 560**; Müller A., Krickemeyer E., Dillinger S., Bögge H., Plass W., Proust A., Dloczik L., Menke C., Meyer J., Rohlfing R. (1994) Z. anorg. allg. Chem. (im Druck)
- [4] Müller A., Plass W., Krickemeyer E., Dillinger S., Bögge H., Armatage A., Proust A., Beugholt C., Bergmann U. (1994) Angew. Chemie (im Druck)
- [5] Sheldrick G. M. (1986) Programm SHELXS-86, Universität Göttingen; Sheldrick G. M. (1993) Programm SHELXL-93, Universität Göttingen
- [6] Brown I. D. (1981) The Bond-Valence Method: An Empirical Approach to Chemical Structure and Bonding. In: O'Keeffe M., Navrotsky A. (eds.) Structure and Bonding in Crystals, Vol. II. New York: Academic Press, p. 1; Brese N. E., O'Keeffe M. (1991) Acta Cryst. B47: 192
- [7] Müller A., Eltzner W., Sarkar S., Bögge H., Aymonino P. J., Mohan N., Seyer U., Subramanian P. (1983) Z. anorg. allg. Chem. 503: 22
- [8] Müller A., Döring J., Khan M. I., Wittneben V. (1991) Angew. Chem. 103: 203; Int. Ed. Engl. 30: 210

Eingegangen 30. September 1993. Angenommen 4. Oktober 1993

^{**} Die in dieser Arbeit angegebenen Formeln für 1 und 2 weisen die gleiche Cluster-Ladung auf, aber unterscheiden sich durch die Zahl der NH⁺₄-Ionen bzw. die Protonierungsgrade